A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements
نویسندگان
چکیده
Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results.
منابع مشابه
Effects of human limb gestures on galvanic coupling intra-body communication for advanced healthcare system
BACKGROUND Intra-Body Communication (IBC), which utilizes the human body as the transmission medium to transmit signal, is a potential communication technique for the physiological data transfer among the sensors of remote healthcare monitoring system, in which the doctors are permitted to remotely access the healthcare data without interrupt to the patients' daily activities. METHODS This wo...
متن کاملThe Modeling and Simulation of the Galvanic Coupling Intra-Body Communication via Handshake Channel
Intra-body communication (IBC) is a technology using the conductive properties of the body to transmit signal, and information interaction by handshake is regarded as one of the important applications of IBC. In this paper, a method for modeling the galvanic coupling intra-body communication via handshake channel is proposed, while the corresponding parameters are discussed. Meanwhile, the math...
متن کاملA Finite-Element Simulation of Galvanic Coupling Intra-Body Communication Based on the Whole Human Body
Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element metho...
متن کاملStudy of Channel Characteristics for Galvanic-Type Intra-Body Communication Based on a Transfer Function from a Quasi-Static Field Model
Intra-Body Communication (IBC), which modulates ionic currents over the human body as the communication medium, offers a low power and reliable signal transmission method for information exchange across the body. This paper first briefly reviews the quasi-static electromagnetic (EM) field modeling for a galvanic-type IBC human limb operating below 1 MHz and obtains the corresponding transfer fu...
متن کاملPerformance Comparison between Intra-Body and Radio Frequency Wireless Communication for Foot Plantar Pressure Measurement
The sharp boost in healthcare demand has seen novel developments in health monitoring technologies, such as Intra-body communication (IBC). IBC technology envisions a network of continuously operating sensors that measure critical physical and physiological parameters, such as mobility, heart rate and glucose levels just to name a few. Wireless connectivity in IBC technology is the key to its s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sensors
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2016